Loading…

Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses

The subcellular localization of Se and Hg and their cytosolic binding proteins, including cellular oxidative status, in porcine liver and kidney have been studied by using samples from a chronic Hg-contaminated area and a non-Hg-contaminated area. Coaccumulation and redistribution of Se and Hg in su...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2006-08, Vol.366 (2), p.627-637
Main Authors: Chen, Chunying, Qu, Liya, Zhao, Jiujiang, Liu, Shuiping, Deng, Guilong, Li, Bai, Zhang, Peiqun, Chai, Zhifang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The subcellular localization of Se and Hg and their cytosolic binding proteins, including cellular oxidative status, in porcine liver and kidney have been studied by using samples from a chronic Hg-contaminated area and a non-Hg-contaminated area. Coaccumulation and redistribution of Se and Hg in subcellular fractions due to mercury exposure were found. The Hg and Se concentrations in tissues from Hg-exposed porcine were 80 folds and 5–20 folds higher than controls, respectively. Insterestingly, the retention of both Se and Hg increased 10% in mitochondria, while decreased 10% in cytosol of Hg-exposed pig liver. Mercury was mainly in the form of MTs in the cytosol of the non-Hg-exposed porcine kidney. MT binds Hg in the cytosol with limited capacity, and the rest Hg was redistributed to the high molecular weight (MW) proteins (80–100 kDa) in the Hg-exposed group. The coaccumulation of Hg and Se was also found in high MW proteins, where their molar ratio was tended to be 1 : 1. Moreover, the Se-containing polypeptides (3–6 kDa) increased significantly both in hepatic and renal cytosol of the Hg-exposed pigs. Se-dependent GSH-Px and SOD activity were increased to cope with Hg-induced oxidative stress. In previous studies, the roles of Se and MTs were generally taken into account separately; we discussed their combining roles in the case of high Hg exposure. The present results were beneficial to understand the existing states of Hg in vivo and evaluate the interaction of toxic and essential elements.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2005.12.021