Loading…

Biopitch-based general purpose carbon fibers: Processing and properties

Eucalyptus tar pitches are generated on a large scale in Brazil as by-products of the charcoal manufacturing industry. They present a macromolecular structure constituted mainly of phenolic, guaiacyl, and siringyl units common to lignin. The low aromaticity (60–70%), high O/C atomic ratios (0.20–0.2...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2005, Vol.43 (3), p.591-597
Main Authors: Prauchner, M.J., Pasa, V.M.D., Otani, S., Otani, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eucalyptus tar pitches are generated on a large scale in Brazil as by-products of the charcoal manufacturing industry. They present a macromolecular structure constituted mainly of phenolic, guaiacyl, and siringyl units common to lignin. The low aromaticity (60–70%), high O/C atomic ratios (0.20–0.27%), and large molar mass distribution are peculiar features which make biopitches behave far differently from fossil pitches. In the present work, eucalyptus tar pitches are evaluated as precursors of general purpose carbon fibers (GPCF) through a four-step process: pitch pre-treatment and melt spinning, and fiber stabilization and carbonization. Homogeneous isotropic fibers with a diameter of 27 μm were obtained. The fibers had an apparent density of 1.84 g/cm 3, an electrical resistivity of 2 × 10 −4 Ω m, a tensile strength of 130 MPa, and a tensile modulus of 14 GPa. Although the tensile properties advise against using the produced fibers as structural reinforcement, other properties give rise to different potential applications, as for example in the manufacture of activated carbon fibers or felts for electrical insulation.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2004.10.023