Loading…
Repetitive peripheral sensory stimulation for motor recovery after stroke: a scoping review
Enhancing afferent information from the paretic limb can improve post-stroke motor recovery. However, uncertainties exist regarding varied sensory peripheral neuromodulation protocols and their specific impacts. This study outlines the use of repetitive peripheral sensory stimulation (RPSS) and repe...
Saved in:
Published in: | Topics in stroke rehabilitation 2024-10, Vol.31 (7), p.723-737 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enhancing afferent information from the paretic limb can improve post-stroke motor recovery. However, uncertainties exist regarding varied sensory peripheral neuromodulation protocols and their specific impacts. This study outlines the use of repetitive peripheral sensory stimulation (RPSS) and repetitive magnetic stimulation (rPMS) in individuals with stroke.
This scoping review was conducted according to the JBI Evidence Synthesis guidelines. We searched studies published until June 2023 on several databases using a three-step analysis and categorization of the studies: pre-analysis, exploration of the material, and data processing.
We identified 916 studies, 52 of which were included (
= 1,125 participants). Approximately 53.84% of the participants were in the chronic phase, displaying moderate-to-severe functional impairment. Thirty-two studies used RPSS often combining it with task-oriented training, while 20 used rPMS as a standalone intervention. The RPSS primarily targeted the median and ulnar nerves, stimulating for an average of 92.78 min at an intensity that induced paresthesia. RPMS targeted the upper and lower limb paretic muscles, employing a 20 Hz frequency in most studies. The mean stimulation time was 12.74 min, with an intensity of 70% of the maximal stimulator output. Among the 114 variables analyzed in the 52 studies, 88 (77.20%) were in the "s,b" domain, with 26 (22.8%) falling under the "d" domain of the ICF.
Sensory peripheral neuromodulation protocols hold the potential for enhancing post-stroke motor recovery, yet optimal outcomes were obtained when integrated with intensive or task-oriented motor training. |
---|---|
ISSN: | 1074-9357 1945-5119 1945-5119 |
DOI: | 10.1080/10749357.2024.2322890 |