Loading…

LIBS for landmine detection and discrimination

The concept of utilizing laser-induced breakdown spectroscopy (LIBS) technology for landmine detection and discrimination has been evaluated using both laboratory LIBS and a prototype man-portable LIBS systems. LIBS spectra were collected for a suite of landmine casings, non-mine plastic materials,...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2006-07, Vol.385 (6), p.1140-1148
Main Authors: Harmon, Russell S, DeLucia, Jr, Frank C, LaPointe, Aaron, Winkel, Jr, Raymond J, Miziolek, Andrzej W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concept of utilizing laser-induced breakdown spectroscopy (LIBS) technology for landmine detection and discrimination has been evaluated using both laboratory LIBS and a prototype man-portable LIBS systems. LIBS spectra were collected for a suite of landmine casings, non-mine plastic materials, and "clutter-type" objects likely to be present in the soil of a conflict area or a former conflict area. Landmine casings examined included a broad selection of anti-personnel and anti-tank mines from different countries of manufacture. Other materials analyzed included rocks and soil, metal objects, cellulose materials, and different types of plastics. Two "blind" laboratory tests were conducted in which 100 broadband LIBS spectra were obtained for a mixed suite of landmine casings and clutter objects and compared with a previously-assembled spectral reference library. Using a linear correlation approach, "mine/no mine" determinations were correctly made for more than 90% of the samples in both tests. A similar test using a prototype man-portable LIBS system yielded an analogous result, validating the concept of using LIBS for landmine detection and discrimination.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-006-0513-3