Loading…
Improvement of pasture biomass modelling using high-resolution satellite imagery and machine learning
Robust quantification of vegetative biomass using satellite imagery using one or more forms of machine learning (ML) has hitherto been hindered by the extent and quality of training data. Here, we showcase how ML predictive models demonstrably improve when additional training data is used. We collat...
Saved in:
Published in: | Journal of environmental management 2024-04, Vol.356, p.120564-120564, Article 120564 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Robust quantification of vegetative biomass using satellite imagery using one or more forms of machine learning (ML) has hitherto been hindered by the extent and quality of training data. Here, we showcase how ML predictive models demonstrably improve when additional training data is used. We collated field datasets of pasture biomass obtained via destructive sampling, ‘C-Dax’ reflective measurements and rising plate meters (RPM) from ten livestock farms across four States in Australia. Remotely sensed data from the Sentinel-2 constellation was used to retrieve aboveground biomass using a novel machine learning paradigm hereafter termed “SPECTRA-FOR” (Spectral Pasture Estimation using Combined Techniques of Random-forest Algorithm for Features Optimisation and Retrieval). Using this framework, we show that the low temporal resolution of Sentinel-2 in high latitude regions with persistent cloud cover leads to extensive gaps between cloud-free images, hindering model performance and, thus, contemporaneous ability to forecast real-time pasture biomass. By leveraging the spectral consistency between Sentinel-2 and Planet Lab SuperDove to overcome this limitation, we used ten spectral bands of Sentinel-2, four bands of Sentinel-2 as a proxy for pre-2022 SuperDove (referred to as synthetic SuperDove or SSD), and the actual SuperDove (ASD), given that SuperDove imagery has a higher resolution and more frequent passage compared with Sentinel-2. Using their respective bands as input features to SPECRA-FOR, model performance for the ten bands of Sentinel-2 were R2 = 0.87, root mean squared error (RMSE) of 439 kg DM/ha and mean absolute error (MAE) of 255 kg DM/ha, while that for SSD increased to an R2 of 0.92, RMSE of 346 kg DM/ha and MAE = 208 kg DM/ha. The study revealed the importance of robust data mining, imagery harmonisation and model validation for accurate real-time modelling of pasture biomass with ML.
[Display omitted]
•New method to optimise Sentinel-2 imagery using Planet Labs SuperDove data.•The near-infrared band is more sensitive for retrieving aboveground biomass.•The random forest algorithm can capture the grazing regimes of individual farms.•Model performance and evaluation rely on quality data and ample field observations.•The evaluation of the model with monthly data outperformed the varied temporal scales. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.120564 |