Loading…
Gene identification and enzymatic characterization of the initial enzyme in pyrimidine oxidative metabolism, uracil-thymine dehydrogenase
Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the e...
Saved in:
Published in: | Journal of bioscience and bioengineering 2024-06, Vol.137 (6), p.413-419 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the enzyme purification. The purified enzyme was a heteromer consisting of three different subunits. The enzyme catalyzed oxidation of uracil to barbituric acid with artificial electron acceptors such as methylene blue, phenazine methosulfate, benzoquinone, and α-naphthoquinone; however, NAD+, NADP+, flavin adenine dinucleotide, and flavin mononucleotide did not serve as electron acceptors. The enzyme acted not only on uracil and thymine but also on 5-halogen-substituted uracil and hydroxypyrimidine (pyrimidone), while dihydropyrimidine, which is an intermediate in reductive pyrimidine metabolism, and purine did not serve as substrates. The activity of UTDH was enhanced by cerium ions, and this activation was observed with all combinations of substrates and electron acceptors.
•Uracil-thymine dehydrogenase was found to be a heteromer consisting of three different subunits.•Uracil-thymine dehydrogenase catalyzed oxidation of uracil with artificial electron acceptors.•The activity of uracil-thymine dehydrogenase was enhanced by cerium ions. |
---|---|
ISSN: | 1389-1723 1347-4421 |
DOI: | 10.1016/j.jbiosc.2024.02.004 |