Loading…
Comparative analysis of gut microbiome in Pangasionodon hypopthalmus and Labeo catla during health and disease
The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD 50...
Saved in:
Published in: | International microbiology 2024-10, Vol.27 (5), p.1557-1571 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD
50
dose of
A. hydrophila
. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture. |
---|---|
ISSN: | 1618-1905 1618-1905 |
DOI: | 10.1007/s10123-024-00494-x |