Loading…
Engineering of Pore Design and Oxygen Vacancy on High-Entropy Oxides by a Microenvironment Tailoring Strategy
High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity...
Saved in:
Published in: | Inorganic chemistry 2024-03, Vol.63 (12), p.5689-5700 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-entropy oxides (HEOs) exhibit abundant structural diversity due to cationic and anionic sublattices with independence, rendering them superior in catalytic applications compared to monometallic oxides. Nevertheless, the conventional high-temperature calcination approach undermines the porosity and reduces the exposure of active sites (such as oxygen vacancies, OVs) in HEOs, leading to diminished catalytic efficiency. Herein, we fabricate a series of HEOs with a large surface area utilizing a microenvironment modulation strategy (m-NiMgCuZnCo: 86 m2/g, m-MnCuCoNiFe: 67 m2/g, and m-FeCrCoNiMn: 54 m2/g). The enhanced porosity in m-NiMgCuZnCo facilitates the presentation of numerous OVs, exhibiting an exceptional catalytic performance. This tactic creates inspiration for designing HEOs with rich porosity and active species with vast potential applications. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.4c00147 |