Loading…

Reynolds stress modelling of rectangular open-channel flow

A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algo...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 2006-08, Vol.51 (11), p.1319-1334
Main Authors: Kang, Hyeongsik, Choi, Sung-Uk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.1157