Loading…
Cr-Polluted Soil Studied by High Gradient Magnetic Separation and Electron Probe
An Fe-rich soil from the site of a former leather tannery, heavily polluted with Cr, was studied using a combination of wet chemical analysis, high gradient magnetic separation (HGMS), and electron probe microanalysis (EPMA). It is demonstrated that such a combination is a powerful tool for the char...
Saved in:
Published in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 1998-12, Vol.124 (12), p.1159-1164 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An Fe-rich soil from the site of a former leather tannery, heavily polluted with Cr, was studied using a combination of wet chemical analysis, high gradient magnetic separation (HGMS), and electron probe microanalysis (EPMA). It is demonstrated that such a combination is a powerful tool for the characterization of polluted soils, especially in cases where the pollution is present as discrete particles. Both EPMA and magnetic separation data indicated that the Cr pollution was present as a hydrous Cr-oxide phase. The Cr does not correlate with the Fe minerals, most likely as a result of the initial high Cr concentrations in the soil, which lead to precipitation of separate hydrous Cr-oxide minerals and Fe minerals. The Cr-containing material is present as (layered) aggregates, which are formed around larger quartz grains or around very small other particles that served as precipitation nuclei. Magnetic separation tests show that the Cr pollution can largely be removed by HGMS. |
---|---|
ISSN: | 0733-9372 1943-7870 |
DOI: | 10.1061/(ASCE)0733-9372(1998)124:12(1159) |