Loading…

Stress analysis of a layered elastic solid in contact with a rough surface exhibiting fractal behavior

A contact stress analysis is presented for a layered elastic half-space in contact with a rough surface exhibiting self-affine (fractal) behavior. Relationships for the mean contact pressure versus representative strain and the real half-contact width versus elastic properties of the layer and the s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2007-04, Vol.44 (7), p.2109-2129
Main Authors: Komvopoulos, K., Gong, Z.-Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A contact stress analysis is presented for a layered elastic half-space in contact with a rough surface exhibiting self-affine (fractal) behavior. Relationships for the mean contact pressure versus representative strain and the real half-contact width versus elastic properties of the layer and the substrate, asperity radius, layer thickness, and truncated half-contact width were derived from finite element simulations of a layered medium compressed elastically by a rigid cylindrical asperity. These relationships were incorporated in a numerical algorithm that was used to obtain the contact pressure distributions and stresses generated by the asperity contacts formed at the interface of the layered medium and the fractal surface. Analytical solutions illustrate the significance of the elastic material properties, layer thickness, and surface topography (roughness) on global parameters such as normal load and real contact area. Results for the contact pressure distribution and the surface and subsurface stresses provide insight into the initiation of yielding and the tendency for cracking in the layered medium. It is shown that cracking at the surface and the layer/substrate interface is more likely to occur in the case of a stiff layer, whereas surface cracking is more prominent for a relatively compliant layer.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2006.06.043