Loading…

A staggered grid, high-order accurate method for the incompressible Navier–Stokes equations

A high-order accurate, finite-difference method for the numerical solution of the incompressible Navier–Stokes equations is presented. Fourth-order accurate discretizations of the convective and viscous fluxes are obtained on staggered meshes using explicit or compact finite-difference formulas. Hig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2006-07, Vol.215 (2), p.589-613
Main Authors: Kampanis, Nikolaos A., Ekaterinaris, John A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-order accurate, finite-difference method for the numerical solution of the incompressible Navier–Stokes equations is presented. Fourth-order accurate discretizations of the convective and viscous fluxes are obtained on staggered meshes using explicit or compact finite-difference formulas. High-order accuracy in time is obtained by marching the solution with Runge–Kutta methods. The incompressibility constraint is enforced for each Runge–Kutta stage iteratively either by local pressure correction or by a Poisson-equation based global pressure correction method. Local pressure correction is carried out on cell by cell basis using a local, fourth-order accurate discrete analog of the continuity equation. The global pressure correction is based on the numerical solution of a Poisson-type equation which is discretized to fourth-order accuracy, and solved using GMRES. In both cases, the updated pressure is used to recompute the velocities in order to satisfy the incompressibility constraint to fourth-order accuracy. The accuracy and efficiency of the proposed method is demonstrated in test problems.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2005.11.014