Loading…

Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and T0 Curves

Cementite is responsible of the limited application of conventional bainitic steels, however it has been proof that cementite precipitation during bainite formation can be suppressed by the judicious use of silicon in medium carbon steels. In this work, thermodynamic and kinetic models were used to...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International 2006, Vol.46(10), pp.1479-1488
Main Authors: Caballero, Francisca García, Santofimia, María Jesús, Capdevila, Carlos, García-Mateo, Carlos, Andrés, Carlos García de
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cementite is responsible of the limited application of conventional bainitic steels, however it has been proof that cementite precipitation during bainite formation can be suppressed by the judicious use of silicon in medium carbon steels. In this work, thermodynamic and kinetic models were used to design steels with an optimum bainitic microstructure consisting of a mixture of bainitic ferrite, carbon-enriched retained austenite and some martensite. Using these models, a set of seven carbide free bainitic steels with a 0.3 wt% carbon content were proposed for manufacturing. The work presented here is concerned with the microstructural and mechanical characterisation of the steels manufactured. Except for the steel with the highest content of alloying elements, all the grades present the same microstructure composed of carbide-free upper bainite and retained austenite after hot rolling and a two-steps cooling. Theirs tensile strengths range from 1600 to 1950 MPa while keeping a uniform elongation equal to 4% and a total elongation over 10%. Regarding toughness at room temperature, they match quenched and tempered martensitic steels.
ISSN:0915-1559
1347-5460
DOI:10.2355/isijinternational.46.1479