Loading…

A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section

This paper outlines a novel approximate solution for determining the pressure drop of fully developed, laminar, single-phase flow in singly connected microchannels of arbitrary cross-section. Using a “bottom-up” approach, it is shown that for constant fluid properties and flow rate in fixed cross-se...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2007-07, Vol.50 (13), p.2492-2502
Main Authors: Bahrami, Majid, Michael Yovanovich, M., Richard Culham, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper outlines a novel approximate solution for determining the pressure drop of fully developed, laminar, single-phase flow in singly connected microchannels of arbitrary cross-section. Using a “bottom-up” approach, it is shown that for constant fluid properties and flow rate in fixed cross-section channels, the Poiseuille number is only a function of geometrical parameters of the cross-section, i.e., perimeter, area, and polar moment of inertia. The proposed model is validated with experimental data for rectangular, trapezoidal, and triangular microchannels. The model is also compared against numerical results for a wide variety of channel cross-sections including: hyperellipse, trapezoid, sine, square duct with two adjacent round corners, rhombic, circular sector, circular segment, annular sector, rectangular with semi-circular ends, and moon-shaped channels. The model predicts the pressure drop for the cross-sections listed within 8% of the values published.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2006.12.019