Loading…

On imploding cylindrical and spherical shock waves in a perfect gas

The problem of a cylindrically or spherically imploding and reflecting shock wave in a flow initially at rest is studied without the use of the strong-shock approximation. Dimensional arguments are first used to show that this flow admits a general solution where an infinitesimally weak shock from i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2006-08, Vol.560, p.103-122
Main Authors: PONCHAUT, N. F., HORNUNG, H. G., PULLIN, D. I., MOUTON, C. A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of a cylindrically or spherically imploding and reflecting shock wave in a flow initially at rest is studied without the use of the strong-shock approximation. Dimensional arguments are first used to show that this flow admits a general solution where an infinitesimally weak shock from infinity strengthens as it converges towards the origin. For a perfect-gas equation of state, this solution depends only on the dimensionality of the flow and on the ratio of specific heats. The Guderley power-law result can then be interpreted as the leading-order, strong-shock approximation, valid near the origin at the implosion centre. We improve the Guderley solution by adding two further terms in the series expansion solution for both the incoming and the reflected shock waves. A series expansion, valid where the shock is still weak and very far from the origin, is also constructed. With an appropriate change of variables and using the exact shock-jump conditions, a numerical, characteristics-based solution is obtained describing the general shock motion from almost infinity to very close to the reflection point. Comparisons are made between the series expansions, the characteristics solution, and the results obtained using an Euler solver. These show that the addition of two terms to the Guderley solution significantly extends the range of validity of the strong-shock series expansion.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112006000590