Loading…

The influence of source terms on stability, accuracy and conservation in two-dimensional shallow flow simulation using triangular finite volumes

The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensio...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 2007-06, Vol.54 (5), p.543-590
Main Authors: Murillo, J., García-Navarro, P., Burguete, J., Brufau, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensional scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of the second‐order finite volume scheme for this equation, paying special attention to the reduction of the method to first order as a particular case. The explicit first and second order in space upwind finite volume schemes are analysed to provide an understanding of the stability constraints, making emphasis in the numerical conservation and in the preservation of the positivity property of the solution when necessary in the presence of source terms. The time step requirements for stability are defined at the cell edges, related with the traditional Courant–Friedrichs–Lewy (CFL) condition. Copyright © 2007 John Wiley & Sons, Ltd.
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.1417