Loading…

The Interface Reaction between an Ag+-Doped TiO2 Film and Stainless Steel Substrate

Ag+-doped TiO2 films on stainless steel were prepared by a sol-gel method and their microstructures and compositions were studied with X-Ray Diffractometer, Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy. It was shown that Fe atoms in untreated stainless steel react with Ag+...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2007-01, Vol.336-338, p.1559-1562
Main Authors: Ding, Xin Geng, Gao, Ji Wei, Li, Li, Shen, Qian Hong, Liu, Jian Xiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ag+-doped TiO2 films on stainless steel were prepared by a sol-gel method and their microstructures and compositions were studied with X-Ray Diffractometer, Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy. It was shown that Fe atoms in untreated stainless steel react with Ag+ in the TiO2 film and form FeTiO3, which has an acicular crystal form under SEM observation. As a result, Ag+ in the film is reduced to the silver atom, which degrades the antibacterial property of the film. However, after an oxidization of the substrate, a layer of ferric oxide is formed, which reacts with Fe atoms that would otherwise react with and reduce Ag+, and then forms FeTiO3. Thus, the penetration of Fe atoms is stopped and Ag+ in the anatase-structure TiO2 film is protected from the reduction, which enhanced antibacterial property of the film.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.336-338.1559