Loading…

Threshold toughness of polymers in the ductile to brittle transition region by different approaches

The fracture behavior of polymers in the ductile-to-brittle region is neither completely brittle nor entirely ductile. Besides, scatter in toughness results impairs the situation. Consequently, conventional methods based exclusively either on linear elastic fracture mechanics theory (LEFM) or on non...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2007-07, Vol.74 (10), p.1561-1578
Main Authors: Cocco, R.G., Frontini, P.M., Perez Ipiña, J.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fracture behavior of polymers in the ductile-to-brittle region is neither completely brittle nor entirely ductile. Besides, scatter in toughness results impairs the situation. Consequently, conventional methods based exclusively either on linear elastic fracture mechanics theory (LEFM) or on non-linear elastic fracture mechanics theory (NLEFM) are not suitable. It was demonstrated previously, that Weibull statistical method could be successfully used to determine the toughness threshold of polymers displaying ductile-to-brittle behavior. The present study compares the threshold toughness value determined by the statistical approach with other critical values calculated following other different suitable approaches: Low temperature plane strain fracture toughness, Plastic zone corrected fracture toughness, Stable and unstable propagation combined model, J extrapolated at zero stable propagation value, and Quasi J–R curve. The analysis was carried out on data points taken from fracture tests performed on polypropylene homopolymer, PPH, and on a blend of PPH and an elastomeric polyolefin, PPH/POes. The results of this analysis indicate that statistical, stable and unstable propagation combined model, and the J extrapolated at zero stable propagation value methods yield to very similar toughness threshold values being practically equivalent. In this case, threshold value was slightly smaller than the minimum J displayed by the experimental replicas, suggesting that it is an actual representative material toughness. Among these methodologies, the Statistical Method is applicable even if stable crack growth is difficult to determine. On the other hand, the methodologies based on LEFM tended to underestimate the fracture toughness, being very conservative while Quasi J-R curve method based on NLEFM overestimated the PPH/POes toughness value.
ISSN:0013-7944
1873-7315
DOI:10.1016/j.engfracmech.2006.09.011