Loading…

Cell structure and dynamic properties of injection molded polypropylene foams

The cell structure and properties of branched and linear polypropylene (PP) foams containing organically modified nanoclay and maleic anhydride grafted polypropylene (PPMA) have been thoroughly investigated. X‐ray diffraction (XRD) and melt rheometry were used to identify the structure and linear vi...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2007-07, Vol.47 (7), p.1070-1081
Main Authors: Guo, Ming-Cheng, Heuzey, Marie-Claude, Carreau, Pierre J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cell structure and properties of branched and linear polypropylene (PP) foams containing organically modified nanoclay and maleic anhydride grafted polypropylene (PPMA) have been thoroughly investigated. X‐ray diffraction (XRD) and melt rheometry were used to identify the structure and linear viscoelastic properties of the nanocomposites, as well as the effectiveness of two different compatibilizers. These nanocomposites were used in injection molding to investigate their foamability and the influence of experimental conditions such as chemical foaming agent concentration, shot size, back pressure, injection speed, as well as melt temperature and different injection methods on the resulting cell structure of the foams. Quite different results were obtained with the linear and the branched PP. While the foamability of the branched PP was intrinsically good, that of the linear one could largely be improved by modifying its rheological properties and favoring nucleation through the addition of nanoclay. The effect of cell structure on the dynamic mechanical properties of the foams was also investigated using dynamic mechanical analysis (DMA). POLYM. ENG. SCI., 47:1070–1081, 2007. © 2007 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.20786