Loading…

Existence of positive solutions for n + 2 order p -Laplacian BVP

Under some suitable assumptions, we show that the n + 2 order non-linear boundary value problems ( BVP 1 ) { ( E 1 ) [ ϕ p ( u ( n ) ( t ) ) ] ″ = f ( t , u ( t ) , u ( 1 ) ( t ) , … , u ( n + 1 ) ( t ) ) ( BC 1 ) { u ( i ) ( 0 ) = 0 , i = 0 , 1 , 2 , … , n − 3 , u ( n − 1 ) ( 1 ) = 0 u ( n − 2 ) (...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2007-05, Vol.53 (9), p.1367-1379
Main Authors: Yu, Shiueh-Ling, Wong, Fu-Hsiang, Yeh, Cheh-Chih, Lin, Shang-Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under some suitable assumptions, we show that the n + 2 order non-linear boundary value problems ( BVP 1 ) { ( E 1 ) [ ϕ p ( u ( n ) ( t ) ) ] ″ = f ( t , u ( t ) , u ( 1 ) ( t ) , … , u ( n + 1 ) ( t ) ) ( BC 1 ) { u ( i ) ( 0 ) = 0 , i = 0 , 1 , 2 , … , n − 3 , u ( n − 1 ) ( 1 ) = 0 u ( n − 2 ) ( 0 ) = λ u ( n − 1 ) ( η ) u ( n + 1 ) ( 0 ) = α 1 u ( n + 1 ) ( ξ ) u ( n ) ( 1 ) = β 1 u ( n ) ( ξ ) and ( BVP 2 ) { ( E 2 ) [ ϕ p ( u ( n ) ( t ) ) ] ″ = f ( t , u ( t ) , u ( 1 ) ( t ) , … , u ( n + 1 ) ( t ) ) ( BC 2 ) { u ( i ) ( 0 ) = 0 , i = 0 , 1 , 2 , … , n − 3 , u ( n − 1 ) ( 0 ) = 0 u ( n − 2 ) ( 1 ) = − λ u ( n − 1 ) ( η ) u ( n + 1 ) ( 0 ) = α 1 u ( n + 1 ) ( ξ ) u ( n ) ( 1 ) = β 1 u ( n ) ( ξ ) have at least two positive solutions in C n [ 0 , 1 ] .
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2006.05.023