Loading…

A historical and current perspective on predicting thermal cookoff behavior

Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2007-08, Vol.89 (2), p.407-415
Main Authors: BURNHAM, A. K, WEESE, R. K, WEMHOFF, A. P, MAIENSCHEIN, J. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613
cites cdi_FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613
container_end_page 415
container_issue 2
container_start_page 407
container_title Journal of thermal analysis and calorimetry
container_volume 89
creator BURNHAM, A. K
WEESE, R. K
WEMHOFF, A. P
MAIENSCHEIN, J. L
description Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TG), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (Tm, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.
doi_str_mv 10.1007/s10973-006-8161-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30038406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30038406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-AG8B0Vt1kjQfPS6LX7jgRc8hTVM3a7epSXfBf2_KCoKnmYFnXmYehC4J3BIAeZcIVJIVAKJQRJBCHKEZ4UoVtKLiOPcs94JwOEVnKW0AoKqAzNDLAq99GkP01nTY9A22uxhdP-LBxTQ4O_q9w6HHQ3SNz1P_gce1i9tM2xA-Q9vi2q3N3od4jk5a0yV38Vvn6P3h_m35VKxeH5-Xi1VhmZRjYYkhlJO6aacqqbK0qmWprCopc4rxVnLpoBZWVbLkBlRpjeSN5Kx2-Tc2RzeH3CGGr51Lo976ZF3Xmd6FXdIMgKkSRAav_oGbsIt9vk1TIUolsjSVKXKgbAwpRdfqIfqtid-agJ7k6oNcneXqSa6ekq9_k03K4tpoeuvT36KqKgmEsh-IdXim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664861098</pqid></control><display><type>article</type><title>A historical and current perspective on predicting thermal cookoff behavior</title><source>Springer Nature</source><creator>BURNHAM, A. K ; WEESE, R. K ; WEMHOFF, A. P ; MAIENSCHEIN, J. L</creator><creatorcontrib>BURNHAM, A. K ; WEESE, R. K ; WEMHOFF, A. P ; MAIENSCHEIN, J. L</creatorcontrib><description>Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TG), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (Tm, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-006-8161-6</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Chemical industry and chemicals ; Critical temperature ; Differential scanning calorimetry ; Digital computers ; Exact sciences and technology ; Explosions ; Gas analysis ; Industrial chemicals ; Infrared analysis ; Infrared spectroscopy ; Mass spectrometry ; Powders, propellants, explosives ; Predictions ; Reaction kinetics ; Scientific imaging ; Temperature profiles ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2007-08, Vol.89 (2), p.407-415</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613</citedby><cites>FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18997012$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BURNHAM, A. K</creatorcontrib><creatorcontrib>WEESE, R. K</creatorcontrib><creatorcontrib>WEMHOFF, A. P</creatorcontrib><creatorcontrib>MAIENSCHEIN, J. L</creatorcontrib><title>A historical and current perspective on predicting thermal cookoff behavior</title><title>Journal of thermal analysis and calorimetry</title><description>Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TG), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (Tm, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.</description><subject>Applied sciences</subject><subject>Chemical industry and chemicals</subject><subject>Critical temperature</subject><subject>Differential scanning calorimetry</subject><subject>Digital computers</subject><subject>Exact sciences and technology</subject><subject>Explosions</subject><subject>Gas analysis</subject><subject>Industrial chemicals</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Mass spectrometry</subject><subject>Powders, propellants, explosives</subject><subject>Predictions</subject><subject>Reaction kinetics</subject><subject>Scientific imaging</subject><subject>Temperature profiles</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMouK7-AG8B0Vt1kjQfPS6LX7jgRc8hTVM3a7epSXfBf2_KCoKnmYFnXmYehC4J3BIAeZcIVJIVAKJQRJBCHKEZ4UoVtKLiOPcs94JwOEVnKW0AoKqAzNDLAq99GkP01nTY9A22uxhdP-LBxTQ4O_q9w6HHQ3SNz1P_gce1i9tM2xA-Q9vi2q3N3od4jk5a0yV38Vvn6P3h_m35VKxeH5-Xi1VhmZRjYYkhlJO6aacqqbK0qmWprCopc4rxVnLpoBZWVbLkBlRpjeSN5Kx2-Tc2RzeH3CGGr51Lo976ZF3Xmd6FXdIMgKkSRAav_oGbsIt9vk1TIUolsjSVKXKgbAwpRdfqIfqtid-agJ7k6oNcneXqSa6ekq9_k03K4tpoeuvT36KqKgmEsh-IdXim</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>BURNHAM, A. K</creator><creator>WEESE, R. K</creator><creator>WEMHOFF, A. P</creator><creator>MAIENSCHEIN, J. L</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20070801</creationdate><title>A historical and current perspective on predicting thermal cookoff behavior</title><author>BURNHAM, A. K ; WEESE, R. K ; WEMHOFF, A. P ; MAIENSCHEIN, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical industry and chemicals</topic><topic>Critical temperature</topic><topic>Differential scanning calorimetry</topic><topic>Digital computers</topic><topic>Exact sciences and technology</topic><topic>Explosions</topic><topic>Gas analysis</topic><topic>Industrial chemicals</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Mass spectrometry</topic><topic>Powders, propellants, explosives</topic><topic>Predictions</topic><topic>Reaction kinetics</topic><topic>Scientific imaging</topic><topic>Temperature profiles</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURNHAM, A. K</creatorcontrib><creatorcontrib>WEESE, R. K</creatorcontrib><creatorcontrib>WEMHOFF, A. P</creatorcontrib><creatorcontrib>MAIENSCHEIN, J. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURNHAM, A. K</au><au>WEESE, R. K</au><au>WEMHOFF, A. P</au><au>MAIENSCHEIN, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A historical and current perspective on predicting thermal cookoff behavior</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>89</volume><issue>2</issue><spage>407</spage><epage>415</epage><pages>407-415</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Prediction of thermal explosions using chemical kinetic models dates back nearly a century. However, it has only been within the past 25 years that kinetic models and digital computers made reliable predictions possible. Two basic approaches have been used to derive chemical kinetic models for high explosives: [1] measurement of the reaction rate of small samples by mass loss (thermogravimetric analysis, TG), heat release (differential scanning calorimetry, DSC), or evolved gas analysis (mass spectrometry, infrared spectrometry, etc.) or [2] inference from larger-scale experiments measuring the critical temperature (Tm, lowest T for self-initiation), the time to explosion as a function of temperature, and sometimes a few other results, such as temperature profiles. Some of the basic principles of chemical kinetics involved are outlined, and major advances in these two approaches through the years are reviewed.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10973-006-8161-6</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2007-08, Vol.89 (2), p.407-415
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_proquest_miscellaneous_30038406
source Springer Nature
subjects Applied sciences
Chemical industry and chemicals
Critical temperature
Differential scanning calorimetry
Digital computers
Exact sciences and technology
Explosions
Gas analysis
Industrial chemicals
Infrared analysis
Infrared spectroscopy
Mass spectrometry
Powders, propellants, explosives
Predictions
Reaction kinetics
Scientific imaging
Temperature profiles
Thermogravimetric analysis
title A historical and current perspective on predicting thermal cookoff behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20historical%20and%20current%20perspective%20on%20predicting%20thermal%20cookoff%20behavior&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=BURNHAM,%20A.%20K&rft.date=2007-08-01&rft.volume=89&rft.issue=2&rft.spage=407&rft.epage=415&rft.pages=407-415&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-006-8161-6&rft_dat=%3Cproquest_cross%3E30038406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-c1a1251bdfa125728c29b748c8423e835f757e0b6c89745a084ca75d753be1613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664861098&rft_id=info:pmid/&rfr_iscdi=true