Loading…

A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions

We describe a new method for solving the time-dependent two-fluid magnetohydrodynamic (2F-MHD) equations in two dimensions that has significant advantages over other methods. The stream-function/potential representation of the velocity and magnetic field vectors, while fully general, allows accurate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2007-10, Vol.226 (2), p.2146-2174
Main Authors: Jardin, S.C., Breslau, J., Ferraro, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a new method for solving the time-dependent two-fluid magnetohydrodynamic (2F-MHD) equations in two dimensions that has significant advantages over other methods. The stream-function/potential representation of the velocity and magnetic field vectors, while fully general, allows accurate description of nearly incompressible fluid motions and manifestly satisfies the divergence condition on the magnetic field. Through analytic manipulation, the split semi-implicit method breaks the full matrix time advance into four sequential time advances, each involving smaller matrices. The use of a high-order triangular element with continuous first derivatives (C1 continuity) allows the Galerkin method to be applied without introduction of new auxiliary variables (such as the vorticity or the current density). These features, along with the manifestly compact nature of the fully node-based C1 finite elements, lead to minimum size matrices for an unconditionally stable method with order of accuracy h4. The resulting matrices are compatible with direct factorization using SuperLU_dist. We demonstrate the accuracy of the method by presenting examples of two-fluid linear wave propagation, two-fluid linear eigenmodes of a tilting cylinder, and of a challenging nonlinear problem in two-fluid magnetic reconnection.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2007.07.003