Loading…

NVAM-Net: deep learning networks for reconstructing high-quality fiber orientation distributions

Purpose Diffusion magnetic resonance imaging (dMRI) is a widely used non-invasive method for investigating brain anatomical structures. Conventional techniques for estimating fiber orientation distribution (FOD) from dMRI data often neglect voxel-level spatial relationships, leading to ambiguous ass...

Full description

Saved in:
Bibliographic Details
Published in:Neuroradiology 2024-07, Vol.66 (7), p.1177-1187
Main Authors: Li, Jiahao, Ai, Lingmei, Yao, Ruoxia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Diffusion magnetic resonance imaging (dMRI) is a widely used non-invasive method for investigating brain anatomical structures. Conventional techniques for estimating fiber orientation distribution (FOD) from dMRI data often neglect voxel-level spatial relationships, leading to ambiguous associations between target voxels and their neighbors, which, in turn, adversely impacts FOD accuracy. This study aims to address this issue by introducing a novel neural network, the neighboring voxel attention mechanism network (NVAM-Net), designed to reconstruct high-quality FOD images. Methods The NVAM-Net leverages a Transformer architecture and incorporates two innovative attention mechanisms: voxel attention and surface attention. These mechanisms are specifically designed to capture overlooked features among neighboring voxels. The processed features are subsequently passed through two fully connected layers, further enhancing FOD estimation accuracy by separately estimating spherical harmonics (SH) coefficients of varying orders. Results The experimental findings, based on the Human Connectome Project (HCP) dataset, reveal that the reconstructed super-resolution FOD images achieve results comparable to those obtained through more advanced dMRI acquisition protocols. These results underscore the NVAM-Net’s robust performance in reconstructing multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD). Conclusion In summary, this research underscores the NVAM-Net’s advantages and practical feasibility in reconstructing high-quality FOD images. It provides a reliable reference point for clinical applications in the field of diffusion magnetic resonance imaging.
ISSN:0028-3940
1432-1920
DOI:10.1007/s00234-024-03341-y