Loading…

Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?

Background: Continuous glucose monitoring (CGM) has transformed the care of type 1 and type 2 diabetes, and there is potential for CGM to also become influential in prediabetes identification and management. However, to date, we do not have any consensus guidelines or high-quality evidence to guide...

Full description

Saved in:
Bibliographic Details
Published in:Journal of diabetes science and technology 2024-07, Vol.18 (4), p.835-846
Main Authors: Zahalka, Salwa J., Galindo, Rodolfo J., Shah, Viral N., Low Wang, Cecilia C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c292t-d8c2d3341832d3ed0b89049903f13cb8175d1c1fd4114653777323630bac93173
container_end_page 846
container_issue 4
container_start_page 835
container_title Journal of diabetes science and technology
container_volume 18
creator Zahalka, Salwa J.
Galindo, Rodolfo J.
Shah, Viral N.
Low Wang, Cecilia C.
description Background: Continuous glucose monitoring (CGM) has transformed the care of type 1 and type 2 diabetes, and there is potential for CGM to also become influential in prediabetes identification and management. However, to date, we do not have any consensus guidelines or high-quality evidence to guide CGM goals and metrics for use in prediabetes. Methods: We searched PubMed for all English-language articles on CGM use in nonpregnant adults with prediabetes published by November 1, 2023. We excluded any articles that included subjects with type 1 diabetes or who were known to be at risk for type 1 diabetes due to positive islet autoantibodies. Results: Based on the limited data available, we suggest possible CGM metrics to be used for individuals with prediabetes. We also explore the role that glycemic variability (GV) plays in the transition from normoglycemia to prediabetes. Conclusions: Glycemic variability indices beyond the standard deviation and coefficient of variation are emerging as prominent identifiers of early dysglycemia. One GV index in particular, the mean amplitude of glycemic excursion (MAGE), may play a key future role in CGM metrics for prediabetes and is highlighted in this review.
doi_str_mv 10.1177/19322968241242487
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040322177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_19322968241242487</sage_id><sourcerecordid>3040322177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-d8c2d3341832d3ed0b89049903f13cb8175d1c1fd4114653777323630bac93173</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EoqXwACzII0uKz3ZjmwW1FZRKrWAAMUaJ47Sp0rjYzsDb46qFBYnpTqfvft19CF0DGQIIcQeKUapSSTlQTrkUJ6i_nyUMiDg99nughy683xAyiow4Rz0mU6qE5H00n9o21G1nO49nTaetN3hp2zpYV7crXFmHX50p67wwwfh7_LHOAx47g8Pa4InxAS9NcLX2D5forMobb66OdYDenx7fps_J4mU2n44XiaaKhqSUmpaMcZAsVlOSQirClSKsAqYLCWJUgoaq5AA8HTEhBKMsZaTItWIg2ADdHnJ3zn528YJsW3ttmiZvTfwiY4STqCX6iSgcUO2s985U2c7V29x9ZUCyvcHsj8G4c3OM74qtKX83fpRFYHgAfL4y2cZ2ro3v_pP4Da3VdjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040322177</pqid></control><display><type>article</type><title>Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?</title><source>Sage Journals Online</source><creator>Zahalka, Salwa J. ; Galindo, Rodolfo J. ; Shah, Viral N. ; Low Wang, Cecilia C.</creator><creatorcontrib>Zahalka, Salwa J. ; Galindo, Rodolfo J. ; Shah, Viral N. ; Low Wang, Cecilia C.</creatorcontrib><description>Background: Continuous glucose monitoring (CGM) has transformed the care of type 1 and type 2 diabetes, and there is potential for CGM to also become influential in prediabetes identification and management. However, to date, we do not have any consensus guidelines or high-quality evidence to guide CGM goals and metrics for use in prediabetes. Methods: We searched PubMed for all English-language articles on CGM use in nonpregnant adults with prediabetes published by November 1, 2023. We excluded any articles that included subjects with type 1 diabetes or who were known to be at risk for type 1 diabetes due to positive islet autoantibodies. Results: Based on the limited data available, we suggest possible CGM metrics to be used for individuals with prediabetes. We also explore the role that glycemic variability (GV) plays in the transition from normoglycemia to prediabetes. Conclusions: Glycemic variability indices beyond the standard deviation and coefficient of variation are emerging as prominent identifiers of early dysglycemia. One GV index in particular, the mean amplitude of glycemic excursion (MAGE), may play a key future role in CGM metrics for prediabetes and is highlighted in this review.</description><identifier>ISSN: 1932-2968</identifier><identifier>EISSN: 1932-3107</identifier><identifier>DOI: 10.1177/19322968241242487</identifier><identifier>PMID: 38629784</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Blood Glucose - analysis ; Blood Glucose Self-Monitoring ; Continuous Glucose Monitoring ; Humans ; Prediabetic State - blood ; Prediabetic State - diagnosis</subject><ispartof>Journal of diabetes science and technology, 2024-07, Vol.18 (4), p.835-846</ispartof><rights>2024 Diabetes Technology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-d8c2d3341832d3ed0b89049903f13cb8175d1c1fd4114653777323630bac93173</cites><orcidid>0000-0002-3827-7107 ; 0000-0001-8557-5417 ; 0000-0002-9295-3225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38629784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zahalka, Salwa J.</creatorcontrib><creatorcontrib>Galindo, Rodolfo J.</creatorcontrib><creatorcontrib>Shah, Viral N.</creatorcontrib><creatorcontrib>Low Wang, Cecilia C.</creatorcontrib><title>Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?</title><title>Journal of diabetes science and technology</title><addtitle>J Diabetes Sci Technol</addtitle><description>Background: Continuous glucose monitoring (CGM) has transformed the care of type 1 and type 2 diabetes, and there is potential for CGM to also become influential in prediabetes identification and management. However, to date, we do not have any consensus guidelines or high-quality evidence to guide CGM goals and metrics for use in prediabetes. Methods: We searched PubMed for all English-language articles on CGM use in nonpregnant adults with prediabetes published by November 1, 2023. We excluded any articles that included subjects with type 1 diabetes or who were known to be at risk for type 1 diabetes due to positive islet autoantibodies. Results: Based on the limited data available, we suggest possible CGM metrics to be used for individuals with prediabetes. We also explore the role that glycemic variability (GV) plays in the transition from normoglycemia to prediabetes. Conclusions: Glycemic variability indices beyond the standard deviation and coefficient of variation are emerging as prominent identifiers of early dysglycemia. One GV index in particular, the mean amplitude of glycemic excursion (MAGE), may play a key future role in CGM metrics for prediabetes and is highlighted in this review.</description><subject>Blood Glucose - analysis</subject><subject>Blood Glucose Self-Monitoring</subject><subject>Continuous Glucose Monitoring</subject><subject>Humans</subject><subject>Prediabetic State - blood</subject><subject>Prediabetic State - diagnosis</subject><issn>1932-2968</issn><issn>1932-3107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EoqXwACzII0uKz3ZjmwW1FZRKrWAAMUaJ47Sp0rjYzsDb46qFBYnpTqfvft19CF0DGQIIcQeKUapSSTlQTrkUJ6i_nyUMiDg99nughy683xAyiow4Rz0mU6qE5H00n9o21G1nO49nTaetN3hp2zpYV7crXFmHX50p67wwwfh7_LHOAx47g8Pa4InxAS9NcLX2D5forMobb66OdYDenx7fps_J4mU2n44XiaaKhqSUmpaMcZAsVlOSQirClSKsAqYLCWJUgoaq5AA8HTEhBKMsZaTItWIg2ADdHnJ3zn528YJsW3ttmiZvTfwiY4STqCX6iSgcUO2s985U2c7V29x9ZUCyvcHsj8G4c3OM74qtKX83fpRFYHgAfL4y2cZ2ro3v_pP4Da3VdjQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zahalka, Salwa J.</creator><creator>Galindo, Rodolfo J.</creator><creator>Shah, Viral N.</creator><creator>Low Wang, Cecilia C.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3827-7107</orcidid><orcidid>https://orcid.org/0000-0001-8557-5417</orcidid><orcidid>https://orcid.org/0000-0002-9295-3225</orcidid></search><sort><creationdate>202407</creationdate><title>Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?</title><author>Zahalka, Salwa J. ; Galindo, Rodolfo J. ; Shah, Viral N. ; Low Wang, Cecilia C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-d8c2d3341832d3ed0b89049903f13cb8175d1c1fd4114653777323630bac93173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood Glucose - analysis</topic><topic>Blood Glucose Self-Monitoring</topic><topic>Continuous Glucose Monitoring</topic><topic>Humans</topic><topic>Prediabetic State - blood</topic><topic>Prediabetic State - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahalka, Salwa J.</creatorcontrib><creatorcontrib>Galindo, Rodolfo J.</creatorcontrib><creatorcontrib>Shah, Viral N.</creatorcontrib><creatorcontrib>Low Wang, Cecilia C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of diabetes science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahalka, Salwa J.</au><au>Galindo, Rodolfo J.</au><au>Shah, Viral N.</au><au>Low Wang, Cecilia C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?</atitle><jtitle>Journal of diabetes science and technology</jtitle><addtitle>J Diabetes Sci Technol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>835</spage><epage>846</epage><pages>835-846</pages><issn>1932-2968</issn><eissn>1932-3107</eissn><abstract>Background: Continuous glucose monitoring (CGM) has transformed the care of type 1 and type 2 diabetes, and there is potential for CGM to also become influential in prediabetes identification and management. However, to date, we do not have any consensus guidelines or high-quality evidence to guide CGM goals and metrics for use in prediabetes. Methods: We searched PubMed for all English-language articles on CGM use in nonpregnant adults with prediabetes published by November 1, 2023. We excluded any articles that included subjects with type 1 diabetes or who were known to be at risk for type 1 diabetes due to positive islet autoantibodies. Results: Based on the limited data available, we suggest possible CGM metrics to be used for individuals with prediabetes. We also explore the role that glycemic variability (GV) plays in the transition from normoglycemia to prediabetes. Conclusions: Glycemic variability indices beyond the standard deviation and coefficient of variation are emerging as prominent identifiers of early dysglycemia. One GV index in particular, the mean amplitude of glycemic excursion (MAGE), may play a key future role in CGM metrics for prediabetes and is highlighted in this review.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>38629784</pmid><doi>10.1177/19322968241242487</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3827-7107</orcidid><orcidid>https://orcid.org/0000-0001-8557-5417</orcidid><orcidid>https://orcid.org/0000-0002-9295-3225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-2968
ispartof Journal of diabetes science and technology, 2024-07, Vol.18 (4), p.835-846
issn 1932-2968
1932-3107
language eng
recordid cdi_proquest_miscellaneous_3040322177
source Sage Journals Online
subjects Blood Glucose - analysis
Blood Glucose Self-Monitoring
Continuous Glucose Monitoring
Humans
Prediabetic State - blood
Prediabetic State - diagnosis
title Continuous Glucose Monitoring for Prediabetes: What Are the Best Metrics?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Glucose%20Monitoring%20for%20Prediabetes:%20What%20Are%20the%20Best%20Metrics?&rft.jtitle=Journal%20of%20diabetes%20science%20and%20technology&rft.au=Zahalka,%20Salwa%20J.&rft.date=2024-07&rft.volume=18&rft.issue=4&rft.spage=835&rft.epage=846&rft.pages=835-846&rft.issn=1932-2968&rft.eissn=1932-3107&rft_id=info:doi/10.1177/19322968241242487&rft_dat=%3Cproquest_cross%3E3040322177%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-d8c2d3341832d3ed0b89049903f13cb8175d1c1fd4114653777323630bac93173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3040322177&rft_id=info:pmid/38629784&rft_sage_id=10.1177_19322968241242487&rfr_iscdi=true