Loading…
Enhanced Therapeutic Effects of Human Mesenchymal stem Cells Transduced with Secreted Klotho in a Murine Experimental Autoimmune Encephalomyelitis Model
Treatment of multiple sclerosis (MS) remains a major challenge. The aim of this study was to evaluate the therapeutic potential of mesenchymal stem cells (MSCs) engineered with secreted Klotho (SKL) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. EAE was induced in mice. MSC...
Saved in:
Published in: | Molecular neurobiology 2024-12, Vol.61 (12), p.10381-10397 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Treatment of multiple sclerosis (MS) remains a major challenge. The aim of this study was to evaluate the therapeutic potential of mesenchymal stem cells (MSCs) engineered with secreted Klotho (SKL) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. EAE was induced in mice. MSCs or MSCs engineered with SKL (SKL-MSCs) were administered to EAE mice at the onset of disease. Hematoxylin-eosin and luxol fast blue staining were performed to evaluate histopathological changes. Expression of pro-inflammatory (TNF-α, IFN-γ, and IL-17) and anti-inflammatory (IL-10) cytokines was determined in the spinal cord using real-time PCR. Spinal cords were then processed for immunohistochemistry of the aforementioned cytokines. The frequencies of Th1, Th17, and regulatory T (Treg) cells were evaluated by flow cytometry of the spleen. The results showed that SKL-MSCs decreased clinical scores and reduced demyelination and inflammatory infiltration in the spinal cord more significantly than MSCs. Compared to MSCs, SKL-MSCs also exhibited a more profound capability of decreasing expression of TNF-α, IFN-γ, and IL-17 and increasing expression of IL-10 in the spinal cord with an enhanced homing to the inflamed tissue. Moreover, SKL-MSCs decreased the frequencies of Th1 and Th17 cells and increased the frequency of Treg cells in the spleen more potently than MSCs. Taken together, these findings demonstrate that SKL overexpression enhances the therapeutic potential of MSCs, as evidenced by significantly improved disease severity, decreased inflammation and tissue damage in the spinal cord, and a promoted shift in the Th17/Treg balance towards the anti-inflammatory Treg side in the EAE mice. |
---|---|
ISSN: | 0893-7648 1559-1182 1559-1182 |
DOI: | 10.1007/s12035-024-04211-7 |