Loading…

Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures

Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels of generalization capability and interpretability....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.8191-8208
Main Authors: Yang, Ziduo, Zhong, Weihe, Lv, Qiujie, Dong, Tiejun, Chen, Guanxing, Chen, Calvin Yu-Chian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels of generalization capability and interpretability. Intuitively, the inductive bias of an ML-based model for PLA prediction should fit in with biological mechanisms relevant for binding to achieve good predictions with meaningful reasons. To this end, we propose an interaction-based inductive bias to restrict neural networks to functions relevant for binding with two assumptions: 1) A protein-ligand complex can be naturally expressed as a heterogeneous graph with covalent and non-covalent interactions; 2) The predicted PLA is the sum of pairwise atom-atom affinities determined by non-covalent interactions. The interaction-based inductive bias is embodied by an explainable heterogeneous interaction graph neural network (EHIGN) for explicitly modeling pairwise atom-atom interactions to predict PLA from 3D structures. Extensive experiments demonstrate that EHIGN achieves better generalization capability than other state-of-the-art ML-based baselines in PLA prediction and structure-based virtual screening. More importantly, comprehensive analyses of distance-affinity, pose-affinity, and substructure-affinity relations suggest that the interaction-based inductive bias can guide the model to learn atomic interactions that are consistent with physical reality. As a case study to demonstrate practical usefulness, our method is tested for predicting the efficacy of Nirmatrelvir against SARS-CoV-2 variants. EHIGN successfully recognizes the changes in the efficacy of Nirmatrelvir for different SARS-CoV-2 variants with meaningful reasons.
ISSN:0162-8828
1939-3539
1939-3539
2160-9292
DOI:10.1109/TPAMI.2024.3400515