Loading…

Trajectory-Based Time-Resolved Mechanism for Benzene Reductive Elimination from Cyclopentadienyl Mo/W Phenyl Hydride Complexes

Calculated potential energy structures and landscapes are very often used to define the sequence of reaction steps in an organometallic reaction mechanism and interpret kinetic isotope effect (KIE) measurements. Underlying most of this structure-to-mechanism translation is the use of statistical rat...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-06, Vol.128 (24), p.4775-4786
Main Authors: Wheeler, Joshua I., Schaefer, Anthony J., Ess, Daniel H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calculated potential energy structures and landscapes are very often used to define the sequence of reaction steps in an organometallic reaction mechanism and interpret kinetic isotope effect (KIE) measurements. Underlying most of this structure-to-mechanism translation is the use of statistical rate theories without consideration of atomic/molecular motion. Here we report direct dynamics simulations for an organometallic benzene reductive elimination reaction, where nonstatistical intermediates and dynamic-controlled pathways were identified. Specifically, we report single spin state as well as mixed spin state quasiclassical direct dynamics trajectories in the gas phase and explicit solvent for benzene reductive elimination from Mo and W bridged cyclopentadienyl phenyl hydride complexes ([Me2Si­(C5Me4)2]­M­(H)­(Ph), M = Mo and W). Different from the energy landscape mechanistic sequence, the dynamics trajectories revealed that after the benzene C–H bond forming transition state (often called reductive coupling), σ-coordination and π-coordination intermediates are either skipped or circumvented and that there is a direct pathway to forming a spin flipped solvent caged intermediate, which occurs in just a few hundred femtoseconds. Classical molecular dynamics simulations were then used to estimate the lifetime of the caged intermediate, which is between 200 and 400 picoseconds. This indicates that when the η2-π-coordination intermediate is formed, it occurs only after the first formation of the solvent-caged intermediate. This dynamic mechanism intriguingly suggests the possibility that the solvent-caged intermediate rather than a coordination intermediate is responsible (or partially responsible) for the inverse KIE value experimentally measured for W. Additionally, this dynamic mechanism prompted us to calculate the k H/k D KIE value for the C–H bonding forming transition states of Mo and W. Surprisingly, Mo gave a normal value, while W gave an inverse value, albeit small, due to a much later transition state position.
ISSN:1089-5639
1520-5215
1520-5215
DOI:10.1021/acs.jpca.4c01788