Loading…
Remote path-following control for a holonomic Mecanum-wheeled robot in a resource-efficient networked control system
This paper introduces a novel resource-efficient control structure for remote path-following control of autonomous vehicles based on a comprehensive combination of Kalman filtering, non-uniform dual-rate sampling, periodic event-triggered communication, and prediction-based and packet-based control...
Saved in:
Published in: | ISA transactions 2024-08, Vol.151, p.377-390 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a novel resource-efficient control structure for remote path-following control of autonomous vehicles based on a comprehensive combination of Kalman filtering, non-uniform dual-rate sampling, periodic event-triggered communication, and prediction-based and packet-based control techniques. An essential component of the control solution is a non-uniform dual-rate extended Kalman filter (NUDREKF), which includes an h-step ahead prediction stage. The prediction error of the NUDREKF is ensured to be exponentially mean-square bounded. The algorithmic implementation of the filter is straightforward and triggered by periodic event conditions. The main goal of the approach is to achieve efficient usage of resources in a wireless networked control system (WNCS), while maintaining satisfactory path-following behavior for the vehicle (a holonomic Mecanum-wheeled robot). The proposal is additionally capable of coping with typical drawbacks of WNCS such as time-varying delays, and packet dropouts and disorder. A Simscape Multibody simulation application reveals reductions of up to 93% in resource usage compared to a nominal time-triggered control solution. The simulation results are experimentally validated in the holonomic Mecanum-wheeled robotic platform.
•A novel, comprehensive periodic event-triggered networked control solution is proposed.•High reduction of resource usage (of up to 93%) can be reached while maintaining acceptable control performance.•A non-uniform dual-rate extended Kalman filter (NUDREKF) is essential in the control structure.•Some conditions are provided such that the prediction error of the NUDREKF is exponentially mean square bounded.•Real path-following control tests for a holonomic Mecanum-wheeled robot validate the control solution. |
---|---|
ISSN: | 0019-0578 1879-2022 1879-2022 |
DOI: | 10.1016/j.isatra.2024.05.041 |