Loading…
High-security space division multiplexing optical transmission scheme based on constellation grid selective twisting
In this paper, we propose a high-security space division multiplexing optical transmission scheme based on constellation grid selective twisting, which adopts the Rossler chaos model for encrypting PDM-16QAM signals, being applied to a multicore, few-mode multiplexing system. The bitstream of the pr...
Saved in:
Published in: | Optics express 2024-06, Vol.32 (12), p.21258-21268 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a high-security space division multiplexing optical transmission scheme based on constellation grid selective twisting, which adopts the Rossler chaos model for encrypting PDM-16QAM signals, being applied to a multicore, few-mode multiplexing system. The bitstream of the program is passed through XOR function before performing constellation grid selective twisting and rotation of the constellation map to improve the security of the system. The proposed system is verified experimentally by using 80-wave and 4-mode multiplexing in one of the 19-core 4-mode fibers. Based on the proposed encryption method, a net transmission rate of 34.13 Tbit/s, a transmission distance of 6000 km, and a capacity distance product of 204.8 Pb/s × km is achieved under encrypted PDM-QPSK modulation. Likewise, a net transmission rate of 68.27 Tbit/s, a transmission distance of 1000 km, and a capacity distance product of 68.27 Pb/s × km is achieved based on encrypted PDM-16QAM modulation. It is experimentally verified that the sensitivity of the initial value in Rossler's chaotic model is in the range of 10
∼10
. Meanwhile, the proposed encryption scheme achieves a large key space of 10
, which is compatible with the high-capacity distance product multicore and few-mode multiplexing system. It is a promising candidate for the next-generation highly-secured high-capacity transmission system. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.526001 |