Loading…

Mesostriatal Dopaminergic Circuit Dysfunction in Schizophrenia: A Multimodal Neuromelanin-Sensitive Magnetic Resonance Imaging and 18F-DOPA Positron Emission Tomography Study

Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnet...

Full description

Saved in:
Bibliographic Details
Published in:Biological psychiatry (1969) 2024-10, Vol.96 (8), p.674
Main Authors: Vano, Luke J, McCutcheon, Robert A, Rutigliano, Grazia, Kaar, Stephen J, Finelli, Valeria, Nordio, Giovanna, Wellby, George, Sedlacik, Jan, Statton, Ben, Rabiner, Eugenii A, Ye, Rong, Veronese, Mattia, Hopkins, Seth C, Koblan, Kenneth S, Everall, Ian P, Howes, Oliver D
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnetic resonance imaging contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia than in healthy control (HC) participants and whether this correlated with dopamine synthesis capacity.BACKGROUNDStriatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin (NM)-sensitive magnetic resonance imaging provides a marker of long-term dopamine function. We examined whether midbrain NM-sensitive magnetic resonance imaging contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia than in healthy control (HC) participants and whether this correlated with dopamine synthesis capacity.One hundred fifty-four participants (schizophrenia group: n = 74, HC group: n = 80) underwent NM-sensitive magnetic resonance imaging of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n = 38) also received [18F]-DOPA positron emission tomography to measure dopamine synthesis capacity (Kicer) in the SN-VTA and striatum.METHODSOne hundred fifty-four participants (schizophrenia group: n = 74, HC group: n = 80) underwent NM-sensitive magnetic resonance imaging of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n = 38) also received [18F]-DOPA positron emission tomography to measure dopamine synthesis capacity (Kicer) in the SN-VTA and striatum.SN-VTA NM-CNR was significantly higher in patients with schizophrenia than in HC participants (effect size = 0.38, p = .019). This effect was greatest for voxels in the medial and ventral SN-VTA. In patients, SN-VTA Kicer positively correlated with SN-VTA NM-CNR (r = 0.44, p = .005) and striatal Kicer (r = 0.71, p < .001). Voxelwise analysis demonstrated that SN-VTA NM-CNR was positively associated with striatal Kicer (r = 0.53, p = .005) and that this relationship seemed strongest between the ventral SN-VTA and associative striatum in schizophrenia.RESULTSSN-VTA NM-CNR was significantly higher in patients with schizophrenia than in HC participants (effect size = 0.38, p = .019). This effect was greatest for voxels in the medial and ventral SN
ISSN:1873-2402
1873-2402
DOI:10.1016/j.biopsych.2024.06.013