Loading…
Systematic review and meta-analysis of the prognostic value of 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and/or computed tomography (CT)-based radiomics in head and neck cancer
Radiomics involves the extraction of quantitative data from medical images to facilitate the diagnosis, prognosis, and staging of tumors. This study provides a comprehensive overview of the efficacy of radiomics in prognostic applications for head and neck cancer (HNC) in recent years. It undertakes...
Saved in:
Published in: | Clinical radiology 2024-10, Vol.79 (10), p.757-772 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiomics involves the extraction of quantitative data from medical images to facilitate the diagnosis, prognosis, and staging of tumors. This study provides a comprehensive overview of the efficacy of radiomics in prognostic applications for head and neck cancer (HNC) in recent years. It undertakes a systematic review of prognostic models specific to HNC and conducts a meta-analysis to evaluate their predictive performance.
This study adhered rigorously to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature searches. The literature databases, including PubMed, Embase, Cochrane, and Scopus were systematically searched individually. The methodological quality of the incorporated studies underwent assessment utilizing the radiomics quality score (RQS) tool. A random-effects meta-analysis employing the Harrell concordance index (C-index) was conducted to evaluate the performance of all radiomics models.
Among the 388 studies retrieved, 24 studies encompassing a total of 6,978 cases were incorporated into the systematic review. Furthermore, eight studies, focusing on overall survival as an endpoint, were included in the meta-analysis. The meta-analysis revealed that the estimated random effect of the C-index for all studies utilizing radiomics alone was 0.77 (0.71–0.82), with a substantial degree of heterogeneity indicated by an I2 of 80.17%.
Based on this review, prognostic modeling utilizing radiomics has demonstrated enhanced efficacy for head and neck cancers; however, there remains room for improvement in this approach. In the future, advancements are warranted in the integration of clinical parameters and multimodal features, balancing multicenter data, as well as in feature screening and model construction within this field.
• Radiomics models perform well in head and neck cancer prognosis.• Clinical features may not necessarily enhance the performance of radiomics models.• Multimodal imaging contributes to the improvement of radiomics models. |
---|---|
ISSN: | 0009-9260 1365-229X 1365-229X |
DOI: | 10.1016/j.crad.2024.05.016 |