Loading…

Double and Quadruple Flat Bands Tuned by Alternative Magnetic Fluxes in Twisted Bilayer Graphene

Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2024-06, Vol.132 (24), p.246401, Article 246401
Main Authors: Le, Congcong, Zhang, Qiang, Cui, Fan, Wu, Xianxin, Chiu, Ching-Kai
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Twisted bilayer graphene (TBG) can host the moiré energy flat bands with twofold degeneracy serving as a fruitful playground for strong correlations and topological phases. However, the number of degeneracy is not limited to two. Introducing a spatially alternative magnetic field, we report that the induced magnetic phase becomes an additional controllable parameter and leads to an undiscovered generation of fourfold degenerate flat bands. This emergence stems from the band inversion at the Γ point near the Fermi level with a variation of both twisted angle and magnetic phase. We present the conditions for the emergence of multifold degenerate flat bands, which are associated with the eigenvalue degeneracy of a Birman-Schwinger operator. Using holomorphic functions, which explain the origin of the double flat bands in the conventional TBG, we can generate analytical wave functions in the magnetic TBG to show absolute flatness with fourfold degeneracy. Moreover, we identify an orbital-related intervalley coherent state as the many-body ground state at charge neutrality. In contrast, the conventional TBG has only two moiré energy flat bands, and the highly degenerate flat bands with additional orbital channels in this magnetic platform might bring richer correlation physics.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.132.246401