Loading…
Multicaloric Cryocooling Using Heavy Rare-Earth Free La(Fe,Si)13-Based Compounds
The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current rel...
Saved in:
Published in: | ACS applied materials & interfaces 2024-07, Vol.16 (29), p.38208-38220 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to −28 J (kg K)−1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c05397 |