Loading…
Phase Transition to Turbulence via Moving Fronts
Directed percolation (DP), a universality class of continuous phase transitions, has recently been established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or planar flows, the transition occurs via discrete large-scale turbulent structures, known a...
Saved in:
Published in: | Physical review letters 2024-06, Vol.132 (26), p.264002, Article 264002 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Directed percolation (DP), a universality class of continuous phase transitions, has recently been established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or planar flows, the transition occurs via discrete large-scale turbulent structures, known as puffs in pipe flow or bands in planar flows, which either self-replicate or laminarize. However, these processes might not be universal to all subcritical shear flows. Here, we design a numerical experiment that eliminates discrete structures in plane Couette flow and show that it follows a different, simpler transition scenario: turbulence proliferates via expanding fronts and decays via spontaneous creation of laminar zones. We map this phase transition onto a stochastic one-variable system. The level of turbulent fluctuations dictates whether moving-front transition is discontinuous, or continuous and within the DP universality class, with profound implications for other hydrodynamic systems. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.264002 |