Loading…
Mode of Action of Antimicrobial Potential Protease SH21 Derived from Bacillus siamensis
Global public health is facing a major issue with emerging resistance to antimicrobial agents. Antimicrobial agents that are currently on the market are strong and efficient, but it has not been ruled out that these medications will eventually cause resistance to bacteria. Exploring novel bioactive...
Saved in:
Published in: | International journal of molecular sciences 2024-06, Vol.25 (13), p.7046 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Global public health is facing a major issue with emerging resistance to antimicrobial agents. Antimicrobial agents that are currently on the market are strong and efficient, but it has not been ruled out that these medications will eventually cause resistance to bacteria. Exploring novel bioactive compounds derived from natural sources is therefore, crucial to meet future demands. The present study evaluated the mode of action of the antimicrobial potential protease enzyme SH21. Protease SH21 exhibited antimicrobial activity, strong heat stability (up to 100 °C), and pH stability (pH 3.0 to 9.0). In terms of mode of action, we found that protease SH21 was able to disrupt the bacterial cell membrane as the results of the nucleotide leakage and cell membrane permeability assay. In addition, we also checked inner membrane permeability by PI uptake assay which suggested that protease SH21 has the ability to enter the bacterial cell membrane. Our results revealed that the antimicrobial protease SH21 might be a promising candidate for treating microbial infections. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25137046 |