Loading…
Development of crosslinked gelatin films through Maillard reaction and reinforced with poly(vinyl alcohol) for active food packaging
In order to improve the functionality of natural gelatin films for active food packaging applications, a combined strategy of crosslinking via Maillard reaction and blending enhancement incorporated with poly(vinyl alcohol) (PVA) was explored. In this study, when the mass ratio of gelatin to glucose...
Saved in:
Published in: | International journal of biological macromolecules 2024-10, Vol.277 (Pt 2), p.134095, Article 134095 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to improve the functionality of natural gelatin films for active food packaging applications, a combined strategy of crosslinking via Maillard reaction and blending enhancement incorporated with poly(vinyl alcohol) (PVA) was explored. In this study, when the mass ratio of gelatin to glucose was 10:1, Maillard reaction of crosslinked gelatin films was the highest, UV absorption and browning index reached the maximum. Infrared analysis showed that PVA could form strong interfacial interactions with gelatin matrix. The presence of PVA could significantly improve the toughness, water absorption, transparency, and oxygen barrier properties of crosslinked gelatin films. When the amount of PVA reached 5 %, elongation at break and oxygen barrier properties of crosslinked gelatin films were improved by 76.7 % and 47.9 % compared with pure crosslinked gelatin film. Even when the amount of PVA reached 10 %, UV absorption (at 315 nm) of crosslinked gelatin films still exceeded 98.7 %. The addition of PVA could accelerate the dissolution and swelling of crosslinked gelatin films, promoting the migration and release of active substances (Maillard reaction products (MRPs)). The two antioxidant activities tests (DPPH and ABTS method) achieved the highest radical scavenging rates of 71.6 % and 91.2 %, respectively, with corresponding PVA addition of 5 % and 7.5 %. After continuing to add PVA, antioxidant activities began to significantly decrease, which was directly related to the decrease in the generation of MRPs. Therefore, crosslinked gelatin films reinforced with appropriate amount of PVA can be considerable potential as active films for renewable food packaging applications.
[Display omitted]
•PVA can improve mechanical and oxygen barrier properties of crosslinked gelatin films.•PVA can promote the release of MRPs, thereby improving antioxidant activities.•PVA under appropriate proportions can still maintain good UV barrier properties. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.134095 |