Loading…
Weakly Confined Semiconductor Nanocrystals Excel in Photochemical and Optoelectronic Properties: Evidence from Single-Dot Studies
Single-molecule spectroscopy offers state-resolved measurements on charge-transfer reactions of single semiconductor nanocrystals, leading to the discovery of up to six single-charge transfer reactions with seven transient states for single CdSe/CdS core/shell nanocrystals with water (or oxygen) as...
Saved in:
Published in: | Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21948-21959 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-molecule spectroscopy offers state-resolved measurements on charge-transfer reactions of single semiconductor nanocrystals, leading to the discovery of up to six single-charge transfer reactions with seven transient states for single CdSe/CdS core/shell nanocrystals with water (or oxygen) as the hole (or electron) acceptors. Kinetic rates of three photoinduced single-hole transfer reactions decrease significantly upon increasing the number of excess electrons in a nanocrystal, mainly due to efficient Auger nonradiative recombination of the charged single excitons. Conversely, the kinetic rates of three single-electron transfer reactions of an unexcited nanocrystal increase proportionally to the number of excess electrons in it. Results here reveal that charge-transfer reactions of nanocrystals, at the center of nearly all their functions, could only be deciphered at a state-resolved level on a single nanocrystal. Size-dependent studies validate the weakly confined semiconductor nanocrystals, instead of strongly confined ones (quantum dots), as optimal candidates for photochemical and optoelectronic applications. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.4c06993 |