Loading…

Prognostic significance of pyrimidine metabolism-related genes as risk biomarkers in hepatocellular carcinoma

Hepatocellular carcinoma (HCC), as a malignancy derived from liver tissue, is typically associated with poor prognosis. Increasing evidence suggests a connection between pyrimidine metabolism and HCC progression. The purpose of this study was to establish a model applied to the prediction of HCC pat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemotherapy (Florence) 2024-07, p.1-17
Main Authors: Lu, Jie, Shi, Lili, Zhang, Caiming, Zhang, Fabiao, Cai, Miaoguo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hepatocellular carcinoma (HCC), as a malignancy derived from liver tissue, is typically associated with poor prognosis. Increasing evidence suggests a connection between pyrimidine metabolism and HCC progression. The purpose of this study was to establish a model applied to the prediction of HCC patients' overall survival. Transcriptomic data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) website. Pyrimidine metabolism-related genes (PMRGs) were collected from the Gene Set Enrichment Analysis (GSEA) website. Differential gene expression analysis was carried out on the HCC data, followed by an intersection of the differentially expressed genes (DEGs) and PMRGs. Subsequently, a prognostic model incorporating nine genes was established using univariate/multivariate Cox regression and Least absolute shrinkage and selection operator (LASSO) regression. Survival analysis demonstrated that the high-risk group defined by this model had considerably shorter overall survival than the low-risk group in both TCGA and Gene Expression Omnibus (GEO) datasets. Receiver operating characteristic (ROC) analysis indicated the good predictive capability of the model. CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms revealed significantly higher levels of Macrophages M0 and lower levels of natural killer (NK)_cells in the high-risk group compared to the low-risk group. The immunophenoscore (IPS) and the tumor immune dysfunction and exclusion (TIDE) score demonstrated that the model could significantly differentiate patients who would be more suitable for immunotherapy. Moreover, the CellMiner database was utilized to predict anti-tumor drugs significantly associated with the model genes. Collectively, the potential prognostic significance of pyrimidine metabolism in HCC was revealed in this study. The prognostic model aids in evaluating the survival time and immune status of HCC patients.
ISSN:1120-009X
1973-9478
1973-9478
DOI:10.1080/1120009X.2024.2385266