Loading…

Methane-dependent denitrification by Methylomirabilis: an indirect nitrous oxide sink?

Methane-dependent complete denitrification primarily involves nitrate reduction to nitrite by ANME-2d archaea and nitrite reduction to dinitrogen by Methylomirabilis bacteria. ‘Candidatus Methylomirabilis sinica’ integrates the divisional labor. Physiological traits of this bacterium potentially ena...

Full description

Saved in:
Bibliographic Details
Published in:Trends in microbiology (Regular ed.) 2024-11, Vol.32 (11), p.1053-1057
Main Authors: Yao, Xiangwu, Hu, Baolan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methane-dependent complete denitrification primarily involves nitrate reduction to nitrite by ANME-2d archaea and nitrite reduction to dinitrogen by Methylomirabilis bacteria. ‘Candidatus Methylomirabilis sinica’ integrates the divisional labor. Physiological traits of this bacterium potentially enable the simultaneous reduction of N2O and CH4 emissions. This forum article explores these traits and possible microbial mechanisms for co-reduction, providing guidance for greenhouse gas management strategies. Methane-dependent complete denitrification primarily involves nitrate reduction to nitrite by ANME-2d archaea and nitrite reduction to dinitrogen by Methylomirabilis bacteria. ‘Candidatus Methylomirabilis sinica’ integrates the divisional labor. Physiological traits of this bacterium potentially enable the simultaneous reduction of N2O and CH4 emissions. This forum article explores these traits and possible microbial mechanisms for co-reduction, providing guidance for greenhouse gas management strategies.
ISSN:0966-842X
1878-4380
1878-4380
DOI:10.1016/j.tim.2024.07.008