Loading…
The role of gastrodin in the management of CNS‐related diseases: Underlying mechanisms to therapeutic perspectives
Central nervous system (CNS)‐related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pha...
Saved in:
Published in: | Phytotherapy research 2024-11, Vol.38 (11), p.5107-5133 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Central nervous system (CNS)‐related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti‐neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case–control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS‐related disorders. However, important concerns need to be addressed in the context of likely non‐specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High‐quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.
Schematic representation of the use of gastrodin in the treatment of CNS related disorders. |
---|---|
ISSN: | 0951-418X 1099-1573 1099-1573 |
DOI: | 10.1002/ptr.8314 |