Loading…

Localised visualisation of O2 consumption and H2O2 formation by means of SECM for the characterisation of fuel cell catalyst activity

Catalytic reduction of O2 at metal catalysts either follows a 2-electron transfer pathway to the formation of H2O2 or a 4-electron transfer pathway to the formation of H2O. The branching ratio of this reaction has a significant impact on the applicability of catalyst materials. The previously introd...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2007-12, Vol.53 (3), p.1164-1169
Main Authors: ECKHARD, Kathrin, SCHUHMANN, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catalytic reduction of O2 at metal catalysts either follows a 2-electron transfer pathway to the formation of H2O2 or a 4-electron transfer pathway to the formation of H2O. The branching ratio of this reaction has a significant impact on the applicability of catalyst materials. The previously introduced oxygen competition mode of SECM, which allows high-resolution imaging of local O2 consumption, has been extended to a potential-pulse sequence enabling the sequential detection of O2 reduction followed by the detection of local H2O2 formation. Thus, not only the local catalytic activity of a catalyst can be visualised but, additionally, the degree of the branching can be estimated. The selectivity of a catalyst candidate can thereby be visualised sequentially to the elucidation of its activity. First results on the properties of electrodeposited Pt and Au test structures are shown demonstrating the feasibility to clearly distinguish catalyst activity and selectivity under variation of the polarisation potential.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2007.02.028