Loading…

An incompressible multi-phase SPH method

An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incomp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2007-11, Vol.227 (1), p.264-278
Main Authors: Hu, X.Y., Adams, N.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2007.07.013