Loading…

An incompressible multi-phase SPH method

An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incomp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2007-11, Vol.227 (1), p.264-278
Main Authors: Hu, X.Y., Adams, N.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3
cites cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3
container_end_page 278
container_issue 1
container_start_page 264
container_title Journal of computational physics
container_volume 227
creator Hu, X.Y.
Adams, N.A.
description An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.
doi_str_mv 10.1016/j.jcp.2007.07.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30964679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999107003300</els_id><sourcerecordid>30964679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG-9KF5aX9omafC0LOoKCwrqOaTJK5vSfyZdwW9vyy54Ewbm8pt5vCHkmkJCgfL7OqnNkKQAIplFsxOyoCAhTgXlp2QBkNJYSknPyUUINQAULC8W5G7VRa4zfTt4DMGVDUbtvhldPOx0wOj9bRO1OO56e0nOKt0EvDr6knw-PX6sN_H29fllvdrGJmPFGHMmU0jBSmMstbLMtBDcWq5FBoKitjwtWY4p1UUhDNN5CkKXaBhnAsqyypbk9tA7-P5rj2FUrQsGm0Z32O-DykDynAs5gfQAGt-H4LFSg3et9j-Kgpo3UbWaNlHzJmoWzabMzbFcB6ObyuvOuPAXlFQykbGJezhwOH367dCrYBx2Bq3zaEZle_fPlV9QdnUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30964679</pqid></control><display><type>article</type><title>An incompressible multi-phase SPH method</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Hu, X.Y. ; Adams, N.A.</creator><creatorcontrib>Hu, X.Y. ; Adams, N.A.</creatorcontrib><description>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2007.07.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Incompressible flow ; Mathematical methods in physics ; Multi-phase flows ; Particle method ; Physics</subject><ispartof>Journal of computational physics, 2007-11, Vol.227 (1), p.264-278</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</citedby><cites>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19195735$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, X.Y.</creatorcontrib><creatorcontrib>Adams, N.A.</creatorcontrib><title>An incompressible multi-phase SPH method</title><title>Journal of computational physics</title><description>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Incompressible flow</subject><subject>Mathematical methods in physics</subject><subject>Multi-phase flows</subject><subject>Particle method</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG-9KF5aX9omafC0LOoKCwrqOaTJK5vSfyZdwW9vyy54Ewbm8pt5vCHkmkJCgfL7OqnNkKQAIplFsxOyoCAhTgXlp2QBkNJYSknPyUUINQAULC8W5G7VRa4zfTt4DMGVDUbtvhldPOx0wOj9bRO1OO56e0nOKt0EvDr6knw-PX6sN_H29fllvdrGJmPFGHMmU0jBSmMstbLMtBDcWq5FBoKitjwtWY4p1UUhDNN5CkKXaBhnAsqyypbk9tA7-P5rj2FUrQsGm0Z32O-DykDynAs5gfQAGt-H4LFSg3et9j-Kgpo3UbWaNlHzJmoWzabMzbFcB6ObyuvOuPAXlFQykbGJezhwOH367dCrYBx2Bq3zaEZle_fPlV9QdnUl</recordid><startdate>20071110</startdate><enddate>20071110</enddate><creator>Hu, X.Y.</creator><creator>Adams, N.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071110</creationdate><title>An incompressible multi-phase SPH method</title><author>Hu, X.Y. ; Adams, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Incompressible flow</topic><topic>Mathematical methods in physics</topic><topic>Multi-phase flows</topic><topic>Particle method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, X.Y.</creatorcontrib><creatorcontrib>Adams, N.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, X.Y.</au><au>Adams, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An incompressible multi-phase SPH method</atitle><jtitle>Journal of computational physics</jtitle><date>2007-11-10</date><risdate>2007</risdate><volume>227</volume><issue>1</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2007.07.013</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2007-11, Vol.227 (1), p.264-278
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_30964679
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Computational techniques
Exact sciences and technology
Incompressible flow
Mathematical methods in physics
Multi-phase flows
Particle method
Physics
title An incompressible multi-phase SPH method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20incompressible%20multi-phase%20SPH%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hu,%20X.Y.&rft.date=2007-11-10&rft.volume=227&rft.issue=1&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2007.07.013&rft_dat=%3Cproquest_cross%3E30964679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30964679&rft_id=info:pmid/&rfr_iscdi=true