Loading…
An incompressible multi-phase SPH method
An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incomp...
Saved in:
Published in: | Journal of computational physics 2007-11, Vol.227 (1), p.264-278 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3 |
container_end_page | 278 |
container_issue | 1 |
container_start_page | 264 |
container_title | Journal of computational physics |
container_volume | 227 |
creator | Hu, X.Y. Adams, N.A. |
description | An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method. |
doi_str_mv | 10.1016/j.jcp.2007.07.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30964679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999107003300</els_id><sourcerecordid>30964679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG-9KF5aX9omafC0LOoKCwrqOaTJK5vSfyZdwW9vyy54Ewbm8pt5vCHkmkJCgfL7OqnNkKQAIplFsxOyoCAhTgXlp2QBkNJYSknPyUUINQAULC8W5G7VRa4zfTt4DMGVDUbtvhldPOx0wOj9bRO1OO56e0nOKt0EvDr6knw-PX6sN_H29fllvdrGJmPFGHMmU0jBSmMstbLMtBDcWq5FBoKitjwtWY4p1UUhDNN5CkKXaBhnAsqyypbk9tA7-P5rj2FUrQsGm0Z32O-DykDynAs5gfQAGt-H4LFSg3et9j-Kgpo3UbWaNlHzJmoWzabMzbFcB6ObyuvOuPAXlFQykbGJezhwOH367dCrYBx2Bq3zaEZle_fPlV9QdnUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30964679</pqid></control><display><type>article</type><title>An incompressible multi-phase SPH method</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Hu, X.Y. ; Adams, N.A.</creator><creatorcontrib>Hu, X.Y. ; Adams, N.A.</creatorcontrib><description>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2007.07.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Incompressible flow ; Mathematical methods in physics ; Multi-phase flows ; Particle method ; Physics</subject><ispartof>Journal of computational physics, 2007-11, Vol.227 (1), p.264-278</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</citedby><cites>FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19195735$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, X.Y.</creatorcontrib><creatorcontrib>Adams, N.A.</creatorcontrib><title>An incompressible multi-phase SPH method</title><title>Journal of computational physics</title><description>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Incompressible flow</subject><subject>Mathematical methods in physics</subject><subject>Multi-phase flows</subject><subject>Particle method</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG-9KF5aX9omafC0LOoKCwrqOaTJK5vSfyZdwW9vyy54Ewbm8pt5vCHkmkJCgfL7OqnNkKQAIplFsxOyoCAhTgXlp2QBkNJYSknPyUUINQAULC8W5G7VRa4zfTt4DMGVDUbtvhldPOx0wOj9bRO1OO56e0nOKt0EvDr6knw-PX6sN_H29fllvdrGJmPFGHMmU0jBSmMstbLMtBDcWq5FBoKitjwtWY4p1UUhDNN5CkKXaBhnAsqyypbk9tA7-P5rj2FUrQsGm0Z32O-DykDynAs5gfQAGt-H4LFSg3et9j-Kgpo3UbWaNlHzJmoWzabMzbFcB6ObyuvOuPAXlFQykbGJezhwOH367dCrYBx2Bq3zaEZle_fPlV9QdnUl</recordid><startdate>20071110</startdate><enddate>20071110</enddate><creator>Hu, X.Y.</creator><creator>Adams, N.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071110</creationdate><title>An incompressible multi-phase SPH method</title><author>Hu, X.Y. ; Adams, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Incompressible flow</topic><topic>Mathematical methods in physics</topic><topic>Multi-phase flows</topic><topic>Particle method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, X.Y.</creatorcontrib><creatorcontrib>Adams, N.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, X.Y.</au><au>Adams, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An incompressible multi-phase SPH method</atitle><jtitle>Journal of computational physics</jtitle><date>2007-11-10</date><risdate>2007</risdate><volume>227</volume><issue>1</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time-step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized gradient and divergence operators do not require a differentiable density or viscosity field is proposed. Numerical examples for Taylor–Green flow, capillary waves, drop deformation in shear flows and for Rayleigh–Taylor instability are presented and compared to theoretical solutions or references from literature. The results suggest good accuracy and convergence properties of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2007.07.013</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2007-11, Vol.227 (1), p.264-278 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_30964679 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Computational techniques Exact sciences and technology Incompressible flow Mathematical methods in physics Multi-phase flows Particle method Physics |
title | An incompressible multi-phase SPH method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20incompressible%20multi-phase%20SPH%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hu,%20X.Y.&rft.date=2007-11-10&rft.volume=227&rft.issue=1&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2007.07.013&rft_dat=%3Cproquest_cross%3E30964679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-6592020d9ccd1d9b3a776dd6a73071ead62b54e21a887c5a4207abec56570bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30964679&rft_id=info:pmid/&rfr_iscdi=true |