Loading…

PathMLP: Smooth path towards high-order homophily

Real-world graphs exhibit increasing heterophily, where nodes no longer tend to be connected to nodes with the same label, challenging the homophily assumption of classical graph neural networks (GNNs) and impeding their performance. Intriguingly, from the observation of heterophilous data, we notic...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks 2024-12, Vol.180, p.106650, Article 106650
Main Authors: Zhou, Jiajun, Xie, Chenxuan, Gong, Shengbo, Qian, Jiaxu, Yu, Shanqing, Xuan, Qi, Yang, Xiaoniu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real-world graphs exhibit increasing heterophily, where nodes no longer tend to be connected to nodes with the same label, challenging the homophily assumption of classical graph neural networks (GNNs) and impeding their performance. Intriguingly, from the observation of heterophilous data, we notice that certain high-order information exhibits higher homophily, which motivates us to involve high-order information in node representation learning. However, common practices in GNNs to acquire high-order information mainly through increasing model depth and altering message-passing mechanisms, which, albeit effective to a certain extent, suffer from three shortcomings: (1) over-smoothing due to excessive model depth and propagation times; (2) high-order information is not fully utilized; (3) low computational efficiency. In this regard, we design a similarity-based path sampling strategy to capture smooth paths containing high-order homophily. Then we propose a lightweight model based on multi-layer perceptrons (MLP), named PathMLP, which can encode messages carried by paths via simple transformation and concatenation operations, and effectively learn node representations in heterophilous graphs through adaptive path aggregation. Extensive experiments demonstrate that our method outperforms baselines on 16 out of 20 datasets, underlining its effectiveness and superiority in alleviating the heterophily problem. In addition, our method is immune to over-smoothing and has high computational efficiency. The source code will be available in https://github.com/Graph4Sec-Team/PathMLP.
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2024.106650