Loading…
Regulating Electron-Phonon Coupling by Solid Additive for Efficient Organic Solar Cells
Strong electron-phonon coupling can hinder exciton transport and induce undesirable non-radiative recombination, resulting in a shortened exciton diffusion distance and constrained exciton dissociation in organic solar cells (OSCs). Therefore, suppressing electron-phonon coupling is crucially import...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-10, p.e202413309 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Strong electron-phonon coupling can hinder exciton transport and induce undesirable non-radiative recombination, resulting in a shortened exciton diffusion distance and constrained exciton dissociation in organic solar cells (OSCs). Therefore, suppressing electron-phonon coupling is crucially important for achieve high-performance OSCs. Here, we employ the solid additive to regulating electron-phonon coupling in OSCs. The planar configuration of SA1 confers a significant advantage in suppressing lattice vibrations in the active layers, reducing the scattering of excitons by phonons caused by lattice vibrations. Consequently, a slow but sustained hole transfer process is identified in the SA1-assisted film, indicating an enhancement in hole transfer efficiency. Prolonged exciton diffusion length and exciton lifetime are achieved in the blend film processed with SA1, attributed to a low non-radiative recombination rate and low energetic disorder for charge carrier transport. As a result, a high efficiency of 20% was achieved for ternary device with a remarkable short-circuit current. This work highlights the important role of suppressing electron-phonon coupling in improving the photovoltaic performance of OSCs. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202413309 |