Loading…

Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances

Nonlinear dynamics of a hinged–hinged pipe conveying pulsatile fluid subjected to combination and principal parametric resonance in the presence of internal resonance is investigated. The system has geometric cubic nonlinearity due to stretching effect out of immovable support conditions at both end...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2008-01, Vol.309 (3), p.375-406
Main Authors: Panda, L.N., Kar, R.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonlinear dynamics of a hinged–hinged pipe conveying pulsatile fluid subjected to combination and principal parametric resonance in the presence of internal resonance is investigated. The system has geometric cubic nonlinearity due to stretching effect out of immovable support conditions at both ends. The pipe conveys fluid at a velocity with a harmonically varying component over a constant mean velocity. For appropriate choice of system parameters, the natural frequency of the second mode is approximately three times that of the first mode for a range of mean flow velocity, activating a three-to-one internal resonance. The analysis is carried out using the method of multiple scales by directly attacking the governing nonlinear integro-partial-differential equations and the associated boundary conditions. The set of first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for combination parametric resonance and principal parametric resonance. Stability, bifurcation and response behavior of the pipe are investigated. The amplitude and frequency detuning of the harmonic velocity perturbation are taken as the control parameters. The system exhibits response in the directly excited and indirectly excited modes due to modal interaction. Dynamic response of the system is presented in the form of phase plane trajectories, Poincare maps and time histories. A wide array of dynamical behavior is observed illustrating the influence of internal resonance.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2007.05.023