Loading…
Secondary structure analysis of proteins within the same topology group
The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homo...
Saved in:
Published in: | Biochemical and biophysical research communications 2024-11, Vol.734, p.150613, Article 150613 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homologous and non-homologous proteins with identical topology. The analysis focuses on secondary structures with special emphasis on their fraction, distribution along the polypeptide chain, and chirality. Three different groups of proteins with identical topology were considered according to the CATH database: a homologous group of Globins, a group of Phycocyanins, which is often considered as a potential relative of globins, and a diverse assembly of other globin-like proteins. Some structural patterns in the distribution of secondary structure have been identified within Globins. A similar profile was observed in Phycocyanins, in contrast to the third group. In addition, a distinguishable structural motif, including structures such as 310-helix and irregular structure, has been found in both Globins and Phycocyanins, which can be proposed as an evolutionary imprint.
•Homologous proteins' secondary structures differ from other ones with same topology.•α-helices are more similar in globins than in other non-homologous proteins.•Goblins and phycocyanins share minor structures unlike other globin-like proteins. |
---|---|
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2024.150613 |