Loading…
Dual-Tree Complex Wavelet Pooling and Attention-Based Modified U-Net Architecture for Automated Breast Thermogram Segmentation and Classification
Thermography is a non-invasive and non-contact method for detecting cancer in its initial stages by examining the temperature variation between both breasts. Preprocessing methods such as resizing, ROI (region of interest) segmentation, and augmentation are frequently used to enhance the accuracy of...
Saved in:
Published in: | Journal of imaging informatics in medicine 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermography is a non-invasive and non-contact method for detecting cancer in its initial stages by examining the temperature variation between both breasts. Preprocessing methods such as resizing, ROI (region of interest) segmentation, and augmentation are frequently used to enhance the accuracy of breast thermogram analysis. In this study, a modified U-Net architecture (DTCWAU-Net) that uses dual-tree complex wavelet transform (DTCWT) and attention gate for breast thermal image segmentation for frontal and lateral view thermograms, aiming to outline ROI for potential tumor detection, was proposed. The proposed approach achieved an average Dice coefficient of 93.03% and a sensitivity of 94.82%, showcasing its potential for accurate breast thermogram segmentation. Classification of breast thermograms into healthy or cancerous categories was carried out by extracting texture- and histogram-based features and deep features from segmented thermograms. Feature selection was performed using Neighborhood Component Analysis (NCA), followed by the application of machine learning classifiers. When compared to other state-of-the-art approaches for detecting breast cancer using a thermogram, the proposed methodology showed a higher accuracy of 99.90% for VGG16 deep features with NCA and Random Forest classifier. Simulation results expound that the proposed method can be used in breast cancer screening, facilitating early detection, and enhancing treatment outcomes.Thermography is a non-invasive and non-contact method for detecting cancer in its initial stages by examining the temperature variation between both breasts. Preprocessing methods such as resizing, ROI (region of interest) segmentation, and augmentation are frequently used to enhance the accuracy of breast thermogram analysis. In this study, a modified U-Net architecture (DTCWAU-Net) that uses dual-tree complex wavelet transform (DTCWT) and attention gate for breast thermal image segmentation for frontal and lateral view thermograms, aiming to outline ROI for potential tumor detection, was proposed. The proposed approach achieved an average Dice coefficient of 93.03% and a sensitivity of 94.82%, showcasing its potential for accurate breast thermogram segmentation. Classification of breast thermograms into healthy or cancerous categories was carried out by extracting texture- and histogram-based features and deep features from segmented thermograms. Feature selection was performed using Neighborhood Componen |
---|---|
ISSN: | 2948-2933 2948-2933 |
DOI: | 10.1007/s10278-024-01239-y |