Loading…
Recombinant porcine interferon δ8 inhibited porcine deltacoronavirus infection in vitro and in vivo
Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) ex...
Saved in:
Published in: | International journal of biological macromolecules 2024-11, Vol.279 (Pt 3), p.135375, Article 135375 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) expressed by the HEK 293F expression system was used to evaluated its antiviral activity against PDCoV both in vitro and in vivo. Results demonstrated that rIFN-δ8 displayed non-toxic to ST cells and primary PAMs, and effectively inhibited PDCoV replication in a dose-dependent manner in vitro, with complete suppression of virus replication at a concentration of 2 μg/ml. Treatment of piglets with two doses of 25 μg/kg of rIFN-δ8 reduced clinical symptoms, decreased virus shedding, alleviated intestinal damage, and lowered the viral load in the jejunum and ileum. Furthermore, the levels of interferon-stimulated genes (ISGs) such as Viper, Mx1, ISG15, IFIT1, OSA, and IFITM1 were significantly increased both in vitro and in vivo, with elevated ISG levels sustained for at least 3 days in vivo. These findings suggest that rIFN-δ8 has the potential to serve as an effective antiviral agent for preventing PDCoV in pigs in the future. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135375 |