Loading…

Vascular resistance indices are higher in the superior than inferior optic nerve head and retina

Retinal vascular resistance is of interest in glaucoma research, as a potential link between retinal ganglion cell loss and observed phenomena including disrupted vascular autoregulation, altered biomechanical stiffness, and impaired neurovascular coupling. It can now be assessed in vivo, using lase...

Full description

Saved in:
Bibliographic Details
Published in:Experimental eye research 2024-11, Vol.248, p.110070, Article 110070
Main Authors: Gardiner, Stuart K., Cull, Grant, Fortune, Brad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retinal vascular resistance is of interest in glaucoma research, as a potential link between retinal ganglion cell loss and observed phenomena including disrupted vascular autoregulation, altered biomechanical stiffness, and impaired neurovascular coupling. It can now be assessed in vivo, using laser speckle flowgraphy. However, continued progress in the field requires better understanding of its physiology. In this study, we test the hypothesis of homogeneity of vascular resistance indices between regions of the retina: specifically, between superior and inferior hemifields. The resistivity index (maximum flow minus minimum flow, as a proportion of the maximum) and pulsatility index (maximum minus minimum, as a proportion of the mean) were measured in major vessels within the optic nerve head, in the remaining tissue within the optic nerve head, and in peripapillary branch retinal arteries, separated in each case into superior and inferior quadrants. This was performed in 378 eyes of 189 participants with suspected, early or moderate glaucoma; and in 99 eyes of 50 participants without any ocular pathology. In the glaucoma cohort, the resistivity index was on average 9% higher superiorly than inferiorly in vessels within the optic nerve head; 8% higher superiorly in remaining tissue; and 8% higher superiorly in peripapillary vessels (all p 
ISSN:0014-4835
1096-0007
1096-0007
DOI:10.1016/j.exer.2024.110070